Practical Deep Learning at Scale with MLflow - Yong Liu & Dr. Matei Zaharia

Practical Deep Learning at Scale with MLflow

By Yong Liu & Dr. Matei Zaharia

  • Release Date: 2022-07-08
  • Genre: Computers

Train, test, run, track, store, tune, deploy, and explain provenance-aware deep learning models and pipelines at scale with reproducibility using MLflow

Key Features
Focus on deep learning models and MLflow to develop practical business AI solutions at scaleShip deep learning pipelines from experimentation to production with provenance trackingLearn to train, run, tune and deploy deep learning pipelines with explainability and reproducibility
Book Description

The book starts with an overview of the deep learning (DL) life cycle and the emerging Machine Learning Ops (MLOps) field, providing a clear picture of the four pillars of deep learning: data, model, code, and explainability and the role of MLflow in these areas.

From there onward, it guides you step by step in understanding the concept of MLflow experiments and usage patterns, using MLflow as a unified framework to track DL data, code and pipelines, models, parameters, and metrics at scale. You'll also tackle running DL pipelines in a distributed execution environment with reproducibility and provenance tracking, and tuning DL models through hyperparameter optimization (HPO) with Ray Tune, Optuna, and HyperBand. As you progress, you'll learn how to build a multi-step DL inference pipeline with preprocessing and postprocessing steps, deploy a DL inference pipeline for production using Ray Serve and AWS SageMaker, and finally create a DL explanation as a service (EaaS) using the popular Shapley Additive Explanations (SHAP) toolbox.

By the end of this book, you'll have built the foundation and gained the hands-on experience you need to develop a DL pipeline solution from initial offline experimentation to final deployment and production, all within a reproducible and open source framework.

What you will learn
Understand MLOps and deep learning life cycle developmentTrack deep learning models, code, data, parameters, and metricsBuild, deploy, and run deep learning model pipelines anywhereRun hyperparameter optimization at scale to tune deep learning modelsBuild production-grade multi-step deep learning inference pipelinesImplement scalable deep learning explainability as a serviceDeploy deep learning batch and streaming inference servicesShip practical NLP solutions from experimentation to production
Who this book is for

This book is for machine learning practitioners including data scientists, data engineers, ML engineers, and scientists who want to build scalable full life cycle deep learning pipelines with reproducibility and provenance tracking using MLflow. A basic understanding of data science and machine learning is necessary to grasp the concepts presented in this book.

Comments:

12 Comments
Taylor Mackenzie
Amazing! I love this site
Aston Ayers
Only Signup is easy and free, finally I can read this book Practical Deep Learning at Scale with MLflow with good quality. Thank you!
Ashley Ann
Been waiting to download this book for months. and finally came out too
Cheryl Lynn
This book Practical Deep Learning at Scale with MLflow is very nice, with quick read and download
Erin Cochran Cole
Great selection and quality is better than many Book Store, no kidding.
Kyle Magner
yes, i am also through this to download books
Eric Mn
Yes this really works! Just got my free account
Terry Barnes
One of the best book I've seen this year!
Pastor Shahuano
Excited, Happy Reading guys !!!
Laura Velez Garcia
Thanks, I'm so glad to be reading this book
Wouter van der Giessen
Laura Velez Garcia yes same me too
Janet McCann
Sign up was really easy. Less than 1 minute I was hooked up