Adversarial Machine Learning - Aneesh Sreevallabh Chivukula, Xinghao Yang, Bo Liu, Wei Liu & Wanlei Zhou

Adversarial Machine Learning

By Aneesh Sreevallabh Chivukula, Xinghao Yang, Bo Liu, Wei Liu & Wanlei Zhou

  • Release Date: 2023-03-06
  • Genre: Computers & Internet

A critical challenge in deep learning is the vulnerability of deep learning networks to security attacks from intelligent cyber adversaries. Even innocuous perturbations to the training data can be used to manipulate the behaviour of deep networks in unintended ways.  In this book, we review the latest developments in adversarial attack technologies in computer vision; natural language processing; and cybersecurity with regard to multidimensional, textual and image data, sequence data, and temporal data. In turn, we assess the robustness properties of deep learning networks to produce a taxonomy of adversarial examples that characterises the security of learning systems using game theoretical adversarial deep learning algorithms. The state-of-the-art in adversarial perturbation-based privacy protection mechanisms is also reviewed.

We propose new adversary types for game theoretical objectives in non-stationary computational learning environments. Proper quantificationof the hypothesis set in the decision problems of our research leads to various functional problems, oracular problems, sampling tasks, and optimization problems. We also address the defence mechanisms currently available for deep learning models deployed in real-world environments. The learning theories used in these defence mechanisms concern data representations, feature manipulations, misclassifications costs, sensitivity landscapes, distributional robustness, and complexity classes of the adversarial deep learning algorithms and their applications.

In closing, we propose future research directions in adversarial deep learning applications for resilient learning system design and review formalized learning assumptions concerning the attack surfaces and robustness characteristics of artificial intelligence applications so as to deconstruct the contemporary adversarial deep learning designs. Given its scope, the book will be of interest to Adversarial Machine Learning practitioners and Adversarial Artificial Intelligence researchers whose work involves the design and application of Adversarial Deep Learning.

Comments:

12 Comments
Taylor Mackenzie
Amazing! I love this site
Aston Ayers
Only Signup is easy and free, finally I can read this book Adversarial Machine Learning with good quality. Thank you!
Ashley Ann
Been waiting to download this book for months. and finally came out too
Cheryl Lynn
This book Adversarial Machine Learning is very nice, with quick read and download
Erin Cochran Cole
Great selection and quality is better than many Book Store, no kidding.
Kyle Magner
yes, i am also through this to download books
Eric Mn
Yes this really works! Just got my free account
Terry Barnes
One of the best book I've seen this year!
Pastor Shahuano
Excited, Happy Reading guys !!!
Laura Velez Garcia
Thanks, I'm so glad to be reading this book
Wouter van der Giessen
Laura Velez Garcia yes same me too
Janet McCann
Sign up was really easy. Less than 1 minute I was hooked up